Exercise 42

Prove, using Definition 6, that $\lim _{x \rightarrow-3} \frac{1}{(x+3)^{4}}=\infty$.

Solution

According to Definition 6, proving this infinite limit is logically equivalent to proving that

$$
\text { if } \quad 0<|x-(-3)|<\delta \quad \text { then } \quad \frac{1}{(x+3)^{4}}>M,
$$

where M is any positive number. Start by working backwards, looking for a number δ that's greater than $|x+3|$.

$$
\begin{gathered}
\frac{1}{(x+3)^{4}}>M \\
1>M(x+3)^{4} \\
\frac{1}{M}>(x+3)^{4} \\
\sqrt[4]{\frac{1}{M}}>\sqrt[4]{(x+3)^{4}} \\
\frac{1}{\sqrt[4]{M}}>|x+3|
\end{gathered}
$$

Choose $\delta=\frac{1}{\sqrt[4]{M}}$. The hypothesis then becomes

$$
\begin{gathered}
0<|x-(-3)|<\delta \\
|x+3|<\delta \\
|x+3|<\frac{1}{\sqrt[4]{M}} \\
(x+3)^{4}<\frac{1}{M} \\
M(x+3)^{4}<1 \\
M<\frac{1}{(x+3)^{4}} .
\end{gathered}
$$

Therefore, by the precise definition of a limit,

$$
\lim _{x \rightarrow-3} \frac{1}{(x+3)^{4}}=\infty
$$

